

DEGREE PROGRAMME IN ELECTRICAL ENGINEERING

MASTER’S THESIS

RAPID PROTOTYPING FROM ALGORITHM TO

FPGA PROTOTYPE

 Author Joonas Järviluoma

 Thesis supervisor Antti Mäntyniemi

 Second supervisor Jukka Lahti

 Thesis technical supervisor Esa-Matti Turtinen

August 2015

Järviluoma J. (2015) Rapid Prototyping from Algorithm to FPGA Prototype.
University of Oulu, Department of Electrical Engineering, Degree Programme in

Electrical Engineering. Master’s Thesis, 59 p.

ABSTRACT

Wireless data usage continuously increases in today’s world setting higher

requirements for wireless networks. Ever increasing requirements result in more

complex hardware (HW) implementation, especially telecommunication System-

on-Chips (SoC) performance is playing a key-role in this development.

Complexity increases design workload, therefore, it makes design flow times

longer. High-Level Synthesis (HLS) tools have been designed to automate and

accelerate design by moving manual work on a higher level.

This Master’s Thesis studies MathWorks HLS workflow usage for rapid

prototyping of Wireless Communication SoC Intellectual Property (IP). This

thesis introduces design and FPGA prototyping flow of Application-Specific

Integrated Circuit (ASIC). It presents good design practices targeted for HLS. It

also studies MathWorks Hardware Description Language (HDL) generation flow

with HDL Coder, possible problems during the flow and solutions to overcome

the problems. The HLS flow is examined with an example design that scales and

limits the power of IQ-data. This work verifies the design in a Field-

Programmable Gate Array (FPGA) environment. It concentrates on evaluating

the usage and benefits of MathWorks HLS workflow targeted for rapid

prototyping of SoCs.

The Example IP is a Simulink model containing MATLAB algorithms and

System Objects. The design is optimized on algorithm level and synthesized into

VHDL. The generated Register-Transfer Level (RTL) is verified in co-simulation

against the algorithm model. Optimization and verification methods are

evaluated. The HDL model is further processed through logic-synthesis using the

3rd party synthesis tool run automatically with a script created by MathWorks

workflow. The generated design is tested on FPGA with FPGA-in-the-loop

simulation configuration. FPGA prototyping flow benefits for rapid prototyping

are evaluated.

Coding styles to generate synthesizable HDL code and simulation methods to

improve simulation speed of hardware-like algorithm were discussed.

MathWorks HLS workflow was evaluated for rapid prototype purposes from

algorithm to FPGA. Optimization methods and capability for production quality

RTL for ASIC target were also discussed.

MathWorks’ tool flow provided promising results for rapid prototyping. It

generated human-readable HDL that was successfully synthesized on FPGA. The

FPGA model was simulated in FPGA-in-the-loop configuration successfully. It

also provided good area and speed results for the ASIC target when the algorithm

was written strictly from the hardware perspective. The process was found to be

distinct and efficient.

Keywords: HDL, HLS, FPGA prototyping, algorithm, rapid prototyping,

MATLAB, HDL Coder

Järviluoma J. (2015) Nopea prototypointi algoritmista FPGA-prototyypiksi.
Oulun yliopisto, sähkötekniikan osasto, sähkötekniikan koulutusohjelma. Diplomityö,

59 s.

TIIVISTELMÄ

Langattoman datan käyttö kasvaa jatkuvasti nykymaailmassa ja asettaa

korkeammat vaatimukset langattomille verkoille. Kasvavat vaatimukset tekevät

laitteistototeutuksesta kompleksisempaa, erityisesti tietoliikenteessä käytettävien

järjestelmäpiirien (SoC) tehokkuus on avainasemassa. Tämä kasvattaa

suunnittelun työmäärää ja näin ollen suunnitteluvuohon kuluva aika pidentyy.

Korkean tason synteesi (HLS) on kehitetty automatisoimaan ja nopeuttamaan

digitaalisuunnittelua siirtämällä manuaalista työtä korkeammalle tasolle.

Tämä diplomityö tutkii MathWorks:n HLS-vuon käyttöä langattomaan

viestintään suunniteltavien SoC:ien tekijänoikeudenalaisten standardoitujen

lohkojen (IP) nopeaan prototypointiin. Työ esittelee perinteisen asiakaspiirin

(ASIC) suunnitteluvuon, FPGA-prototypointivuon ja suunnitteluperiaatteet

HLS:ää varten. Työssä käydään läpi MathWorks:n laitteistokuvauskielen (HDL)

generointivuo HDL Coder:lla, mahdollisia ongelmakohtia vuossa ja ratkaisuja

ongelmiin. HLS-vuota tutkitaan esimerkkimallin avulla, joka skaalaa ja rajoittaa

IQ-datan tehoa. Esimerkkimallin toiminta tarkistetaan ohjelmoitavan

logiikkapiirin (FPGA) kanssa. Työ keskittyy arvioimaan MathWorks:n HLS-

vuon käyttöä ja hyötyä nopeaan prototypointiin SoC:ien kehityksessä.

Esimerkkinä käytetään Simulink-mallia, joka sisältää MATLAB-funktioita ja

System Object-olioita. Algoritmitasolla optimoitu malli syntesoidaan VHDL:ksi

ja rekisterinsiirtotason (RTL) mallin toiminta tarkistetaan yhteissimulaatiolla

alkuperäistä algoritmimallia vasten. Optimointi- ja verifiointimenetelmien

toimivuutta ja tehokkuutta arvioidaan. Generoitu HDL-malli syntesoidaan

kolmannen osapuolen logiikkasynteesi-työkalulla, joka käynnistetään

MathWorks:n työkaluvuon generoimalla komentosarjalla. Luotu malli

ohjelmoidaan FPGA:lle ja sen toiminta tarkistetaan FPGA-simulaatiolla.

Syntesoituvan HDL-koodin generointiin vaadittavia koodaustyylejä ja

algoritmimallin simulointinopeutta parantavia menetelmiä tutkittiin.

MathWorks:n HLS-vuon soveltuvuutta nopeaan prototypointiin algoritmista

FPGA-prototyypiksi pohdittiin. Lisäksi optimointimenetelmiä ja vuon

soveltuvuutta tuotantolaatuisen RTL:n generoimiseen arvioitiin.

MathWorks:n työkaluvuo osoitti lupaavia tuloksia nopean prototypoinnin

näkökulmasta. Se loi luettavaa HDL-koodia, joka syntesoitui FPGA:lle. Malli

ajettiin onnistuneesti FPGA:lla. Vuon avulla saavutettiin hyviä tuloksia pinta-

alan ja nopeuden suhteen, kun malli optimoitiin asiakaspiirille. Tämä vaati

mallin kuvaamista tarkasti laitteiston näkökulmasta. Prosessi oli

kokonaisuudessaan selkeä ja tehokas.

Avainsanat: laitteistokuvauskieli, korkean tason synteesi, FPGA-prototypointi,

algoritmi, nopea prototypointi, MATLAB, HDL Coder

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 8

2. HIGH-LEVEL SYNTHESIS ... 9

2.1. ASIC design flow.. 9

2.2. Reference model to HDL code... 11

2.2.1. RTL optimization ... 12

2.3. Verification.. 14

2.4. Logic synthesis .. 15

3. FPGA PROTOTYPING ... 17

3.1. FPGA technology and tools ... 17

3.2. FPGA prototyping flow .. 18

3.3. FPGA prototyping benefits in SoC development 19

4. ALGORITHM DESIGN FOR HDL CODE GENERATION 21

4.1. MATLAB model ... 21

4.2. Simulink model ... 24

4.3. HDL code generation from model ... 27

5. HDL CODE VERIFICATION .. 32

5.1. Verification in RTL simulator.. 32

5.2. Additional RTL verification methods.. 33

6. FPGA SYNTHESIS AND FUNCTIONAL VERIFICATION IN FPGA

ENVIRONMENT ... 35

6.1. Logic synthesis and comparison .. 35

6.2. FPGA environment verification ... 37

7. HDL CODE OPTIMIZATION.. 39

7.1. Optimization for FPGA target.. 39

7.2. Optimization for ASIC target ... 41

8. DISCUSSION ... 45

8.1. Performance and time usage from algorithm to FPGA prototype 45

8.2. Code generation targeting production quality ... 47

8.3. Future development .. 48

8.3.1. Future view with high-performance FPGA environment 48

8.3.2. IP packaging and RTL verification with existing test bench

configuration ... 49

9. CONCLUSION... 50

10. REFERENCES ... 51

11. APPENDICES .. 53

FOREWORD

This Master’s Thesis was done for Nokia Networks SoC Prototyping and Qualification

team during the spring 2015. The aim of this work was to evaluate possible benefits of

MathWork HLS flow for SoC prototyping.

I would like to thank Nokia Networks and Esa-Matti Turtinen for giving me the

possibility to do this Master’s Thesis, and also supporting and motivating me through

the work. I would also like to thank all my team members and Nokia Networks

employees for giving me guidance and tips with all aspects of working in a prototyping

team. Especially, I would like to thank Petri Solanti from MathWorks for excellent co-

operation and regular support.

I would also like to thank my supervisor Antti Mäntyniemi for giving me feedback

and support during the work.

Finally, I would like to give recognition for my family and friends for pushing me

forward during the work.

Oulu, August 2015

Joonas Järviluoma

LIST OF ABBREVIATIONS AND SYMBOLS

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

CLB Configurable Logic Block

DDR3 Double Data Rate 3 (type of memory)

DL Downlink

DUT Device Under Test

EDA Electronic Design Automation

FF Flip-Flop

FIL FPGA-in-the-loop

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Synthesis

HW Hardware

IC Integrated Circuit

I/O Input and Output

IP Intellectual Property

JTAG Joint Test Action Group

LUT Look-Up Table

MEX MATLAB Executable

OOP Object-Oriented Programming

PAR Place and Route

PCI-E Peripheral Component Interconnect Express

PVT Process, Voltage and Temperature

RAM Random Access Memory

ROM Read Only Memory

RTL Register-Transfer Level

SATA Serial Advanced Technology Attachment

SoC System-on-Chip

SRAM Static Random Access Memory

STA Static Timing Analysis

SW Software

UMRBus Universal Multi-Resource Bus

2G Second Generation (mobile network)

3G Third Generation (mobile network)

4G Fourth Generation (mobile network)

bps bits per second

GB Gigabyte

MB Megabyte

1. INTRODUCTION

In 1975, Gordon E. Moore made forecast that the number of transistors that can be

placed on an Integrated Circuit (IC) will double every 24 months. This trend has held

true already over half a century because of continuous and increasing competition in

semiconductor industry. One of the major areas that drive the semiconductor industry
evolution is telecommunications, especially mobile broadband systems. [1]

Mobile access to internet was first introduced in Second Generation (2G) of mobile

phone technology in 1991. Third Generation (3G) was introduced in 2001 and Fourth

Generation (4G) in 2006, and the need for wireless internet access by mobile devices

has increased exponentially since on. This evolution has pushed the boundaries of

mobile broadband systems, therefore, the requirements for mobile networks solutions

have increased in rapid pace. This drives the competition between telecommunication

companies harder and digital HW evolution faster. This means that ASICs have to be
able to process more data in shorter time. [2]

ASIC designs are getting more complex continuously, not only due to the increasing

need of performance and functionality, but also stricter requirements on size and

power-efficiency. This leads to increasing workload on design and verification. In

today’s ASIC development, verification has become the most time consuming part of

the design flow. The growth of design sizes and workload increases design flow times

and affects productivity. Minimizing these is one of the key-points for profitable SoC

business. Figure 1 below presents the trend of workload of manual phases as a function
of design complexity. [3][4]

Figure 1. Trend for lines of code as a function of complexity.

ASIC development consists of several phases from system specifications to actual

chip. Classically, this includes lot of manual work on coding and verification of the

system. HLS tools have been introduced to partly automate the code generation and to

ease verification to speed up the design flow by moving the design focus on a higher

level. Another improvement has been FPGA prototyping to early test the system

1 100 10000 1000000 100000000

yesterday

today

tomorrow

Logarithmic number of lines of code/gates

Gates

RTL

Algorithm

functionality in real-time environment to avoid expensive re-spins in ASIC

manufacturing. Complex designs have also improved the IP reuse to avoid spending

precious time on designing the same blocks multiple times in different projects. [3][5]

In this work, rapid prototyping of telecommunication SoC IP design is studied with

HDL Coder and HDL Verifier tools provided by MathWorks. HDL coder is a HLS

tool that can be used to generate HDL code from Simulink and MATLAB algorithms

and further process the generated HDL code into a FPGA netlist together with 3rd party

synthesis tools. FPGA environment is used for real-time testing of the synthesized
design.

This work evaluates the MathWorks HLS flow for rapid prototyping; time and

workload benefits it provides, possible problems designer may encounter and solutions

to overcome those for faster prototyping. It also studies if the flow is capable for
generating production quality RTL targeting for ASIC.

Chapters 1 and 3 contain the required information for reader to understand the scope

of the work. Chapter 1 concentrates on introducing general ASIC design flow and HLS

flow. The time usage in both approaches is compared and RTL synthesis, verification,

optimization and logic synthesis of HLS flow are shown. Chapter 3 presents FPGA

prototyping technology, methods and benefits. Basic technology is introduced and an

example of a FPGA and a FPGA prototyping environment are shown and they are later

discussed in the work. Chapter 3 also presents FPGA prototyping flow and the benefits
FPGA prototyping gives compared to the traditional ASIC design flow.

In chapter 4, a fully behavioral IP block is synthesized from the Simulink model to

VHDL code. The chapter describes the steps to generate HDL code with HDL Coder–

tool. Chapter 5 concentrates on verifying the generated VHDL in RTL simulator and

in Chapter 6 the design is synthesized and the functionality is tested in FPGA

environment. Chapter 7 introduces optimization techniques in the flow to generate

good quality HDL code targeting for FPGA and ASIC.

Chapter 8 evaluates usability, performance and design flow time benefits that can

be achieved by using the MathWorks HLS flow in SoC development. Finally, Chapter
9 summarizes the work.

9

2. HIGH-LEVEL SYNTHESIS

In this chapter, ASIC design flow and HLS are introduced. The main concentration is

on the ASIC design flow times and complexity in today’s commercial research and

development. Principles of HLS are covered on those parts that are relevant for this
work.

2.1. ASIC design flow

ASIC development from system specifications to silicon chip in telecommunications

systems takes from a few months to a few years, depending on the application. Design

flow generally consists of system analysis, coding and verifying a reference model of

the system, coding and verifying a RTL model from the reference model, logic

synthesis and physical fabrication. HLS improves the design flow by automating RTL

generation from reference model combining it with logic synthesis. HLS flow and

manual flow are presented in Figure 2. [5]

Physical

Target

Manual

RTL

+

Logic

Synthesis

System

Analysis

High-Level

Synthesis

System

Analysis Algorithms

Reference

model

HDL code

(RTL)

Physical

Target
ASIC

Synthesis

constraints
+

RTL verification

and optimization

Floorplanning

Place and Route

Layout

verification and

implementation

Behavioral

verification

Verification

Logic Synthesis

(Gate-level)

Verification

Synthesis

verification

Algorithms

Reference

model

HDL code

(RTL)

ASIC

Lot of

Verification

Logic Synthesis

(Gate-level)

Verification

HLS flow Manual flow

Time consuming

manual RTL

writing

Figure 2. General design flow of ASIC development.

System analysis is an early design phase, which includes system specifications,

architecture specification, coding and verifying algorithms of the system. Architecture

and algorithm choices during the system analysis affect system development and may

have a great effect on design complexity and performance of ASIC. Careful system

10

and architecture specification saves from increased design size, workload, design flow
time and cost. [5]

General approach to create HDL code is to write a reference model of system based

on algorithms and verify it in a simulator. The reference model describes the behavior

of a system. RTL is hand-written based on the reference model and verified in the RTL

simulator to have desired functionality. RTL is used to better describe HW

functionality. Created HDL code is synthesized to gate-level model by logic synthesis

and then further processed to a chip. [5][6]

Logic synthesis includes gate-level synthesis from RTL, floorplanning and Place

and Route (PAR). Floorplan is done on fully functional design to place all the design

blocks on silicon area. PAR is applied to create wire connections for the blocks and

interface on block-level and top-level. After this, layout verification is done and when
all the design specifications are met, a physical chip can be manufactured. [6]

HLS automates design from the reference model to synthesized netlist. Algorithms

are first rewritten to the reference model then HLS is applied with synthesis constraints

for the HDL code generation. The RTL simulator is used to simulate the generated

HDL model and simulation results are verified to meet the desired functionality. A

gate-level model is synthesized from the functional RTL model and verified to have

the desired functionality by meeting timing and technology constraints. HLS includes

automatic optimization methods to modify the RTL model to improve timing or area
properties. [5]

HLS generates RTL code rapidly and it truncates design times. Verification of the

RTL takes around 70 % of the whole design cycle so using HLS gives benefit in design

flow times by allowing the verification to start earlier compared to the manual method

[6]. HLS provides time benefit in iteration speed in case of a flawed algorithm model.

It also moves the verification focus on algorithm and RTL verification becomes

lighter. In HLS flow, changes made on the reference model are automatically changed

in the HDL model after re-synthesizing the model. It provides an option to set the

target FPGA for automatic target constraint setting. Time save in these phases improve

the total flow time. Design flow timelines for manual and HLS ASIC development
approaches are presented in Figure 3. [5]

HLS Flow

Manual Flow

Time

Algorithms

Reference model

RTL

RTL

Algorithms

Verification

Logic Synthesis

Logic Synthesis

ASIC

ASIC

Reference model

Inceased algorithm design

and validation time

Validation

Validation

Verification

Time save in RTL coding

and verification

ASIC ready

earlier

Fast iteration from

the model to RTL

Figure 3. Approximate ASIC design flow timeline.

11

2.2. Reference model to HDL code

ASIC design flow generally starts from algorithms. Based on the algorithms, a

reference model is hand-written in high-level language, for example, SystemC, C++

or MATLAB. The reference model is behavioral model that requires no timing,
concurrency or target technology information. [5]

A reference model is generally represented in floating point arithmetic. The floating

point model is further converted to fixed-point arithmetic for synthesis. The fixed-

point arithmetic enables usage of optimal word lengths and integral arithmetic on HW,

therefore, is cheaper and smaller in area compared to the floating point arithmetic.

Fixed-point model is verified in a simulator to have equal functionality. When the

model has been verified and is working, synthesis constraints can be set. [5]

The synthesis constraints first specify the target technology and clock frequency.

Then reset, clock enable behavior and process level handshake are introduced. Finally,

individual constraints are set: I/Os, loops, storage and design resources. Synthesis flow

is represented in Figure 4. [5]

Algorithm

Floating point model

Fixed-point model

+

Synthesis

Target technology

Clock frequency

Reset

Clock enable

Handshake

I/Os

Loops

Storage

Design resources

HDL code

(RTL)

Figure 4. HDL code synthesis flow.

12

2.2.1. RTL optimization

System specification defines the goal for chip size, clock frequency and power

efficiency. If requirements are not met, RTL can be optimized to reduce area, improve

timing or lower power consumption of ASIC/FPGA. The RTL optimization is done

after the functionality has been verified. [7][8][9]

Timing properties can be changed by tuning throughput, latency or local data path

delay. The throughput means the amount of data that can be processed in a clock cycle

and the unit is called bits per second (bps). The throughput can be improved by loop

unrolling, which decreases the time between input reads. The loop unrolling decreases

or eliminates loop control logic but adds more logic in the design, which increases the

design size. Figure 5 below gives an example of the loop unrolling in case of

calculating X in its 3rd power. [7]

1

0
sel

MUX in out

clk

REG
X [7:0]

Y [7:0]

clk

X [7:0] in out

clk

REG

in out

clk

REG

MUL

MUL in out

clk

REG

MUL

in out

clk

REG

Y [7:0]

start

clk

Design with loop to calculate X^3

Design with loop unrolling to calculate X^3

Throughput: 8/3=

2,67 bits / cycles

Latency: 3 cycles

Throughput: 8/1=

8 bits / cycles

Latency: 3 cycles

Figure 5. Loop unrolling in logic schematic view.

Latency describes the time it takes for data to pass from the input to the output of

the circuit. It can be decreased by increasing parallelism and removing pipeline

registers. Removing the pipeline registers increases critical path delay and decreases

achievable maximum frequency. An example of removing pipeline registers is

presented in Figure 6 below. [7]

13

X [7:0] in out

clk

REG

in out

clk

REG

MUL in out

clk

REG

MUL

in out

clk

REG

Y [7:0]

clk

Design to calculate X^3 with pipeline registers

Design to calculate X^3 without pipeline registers

X [7:0]
MUL

MUL in out

clk

REG

Y [7:0]
clk

Latency: 3 cycles

Latency: 1 cycle

Figure 6. Pipeline removal in logic schematic view.

Logic data path delay is the time required for signal to pass through the logic

between two sequential components. The maximum frequency of the circuit is limited

by the local data path delay. To minimize the delay, more register layers can be added

between the logic or register balancing can be applied. [7]

Area optimization can be done by reusing controllable logic, which is opposite to

the loop unrolling. Adding multiplexers and control logic, for example finite-state

machines (FSM), to the design decreases the amount of registers and arithmetic logic

blocks. This further decreases the required chip area. [7]

Power optimization can be used to reduce the power dissipation of the circuit. The

main reasons for the power dissipation are clocks of sequential circuits that are

constantly switching. The clocks consume large part of the power in systems, up to 45

% of the whole power. One way to reduce the power consumption is to use clock-

gating which decreases unnecessary clock switching for register that have no new input

data. Another way to reduce the power consumption is to use sleep-mode optimization

which shuts down multiplier when the output of it is not used. Both of these methods

add logic in the circuit. Static power consumption can be reduced by using smaller

power supply voltage and shutting off inactive parts of the system. [8][9][10][11]

14

2.3. Verification

Correctness of the ASIC design is the major focus point to avoid manufacturing costs

of faulty designs and increasing time to market. RTL verification is more laborious

than the reference model verification, therefore, it has to be done thoroughly to avoid

re-spins. The verification is the most time consuming design phase in today’s SoC

development, taking approximately 70 % of the whole design flow time. [12]

The RTL verification requires testing the RTL design in every possible scenario to

meet the functional specification. Therefore, it is not standardized for different designs.

Increasing complexity of designs and non-standardized verification drives forward the

IP reuse to speed up the design, the verification and time to market, and decrease the

development costs. IP reuse means that a complex design is divided into smaller

blocks, IPs. The IPs are verified blocks that can be effortlessly reused in other designs.

[12]

The RTL verification includes lint checking, formal model checking, logic

simulation, transaction-based verification and code coverage analysis. The verification

is done first on IP level and finally on chip level. Verification flow is represented in

Figure 7. [12]

SoC design

IP3

IP2

IP1

Lint checking

Formal model checking

Logic simulation

Transaction-based

verification

Code coverage analysis

Verification

Verified IPs

IP verification

SoC verification

To logic synthesis

FPGA prototyping

Figure 7. RTL verification flow in SoC development.

Lint checking is an early check to verify syntactical correctness of the code to

prevent those errors to pass for more time-consuming, advanced tools. It reports

uninitialized variables, unsupported constructs and port mismatches. [12]

Formal model checking compares system behavior to user-defined logical properties

extracted directly from the design specification. For the verification, it uses

mathematical methods and it works well for complex designs. [12]

15

Logic simulation can be done by two approaches; event-based simulator or cycle-

based simulator. In the event-based simulator, the design is tested by one input

stimulus at a time in chronological order. After the stimulus is given, it propagates

trough the design and once steady-state condition is achieved again and new stimulus

is sent. The event-based simulator is an accurate method to verify all the design

elements but it is very time consuming on large designs. The cycle-based simulation

works only on synchronous designs. It checks the logic between state elements and/or

ports at once, therefore, each logic element is evaluated only once within a clock cycle.

This makes the cycle-based simulation faster than the event-based simulation but

vulnerable for simulation errors because it reacts only to the clock signal. [12]

Transaction-based verification allows transaction level simulation and debugging.

It tests systematically every block level transaction of the system and it doesn’t require

detailed test benches. [12]

Code coverage analysis is performed to identify the untested areas of the design and

provide an indirect measure of quality. It is performed on either block level or chip

level RTL view and it lists untested or partially tested areas in the design. [12]

FPGA prototyping is a verification method that allows testing a design on HW

against real-time I/Os and feedback. It enables early software (SW) development.

FPGA prototyping is further introduced in Chapter 3.

2.4. Logic synthesis

Logic synthesis is used to compile the RTL design automatically into a gate-level

netlist. The logic synthesis includes two phases; RTL read in phase and technology

mapping phase. First, RTL is manipulated and combinational logic may be simplified

depending on the RTL coding style. Next, after all changes to the combinational logic

are made, the gate-level design is synthesized to match the RTL functionality with

desired technology library. The libraries include different components so the gate-level

design may vary depending on the technology library used. Simplified logic synthesis

flow is represented in Figure 8. [13]

16

entity MACHINE is

 port(

 A : in std_logic_vector(15 downto 0);

 B : in std_logic_vector(15 downto 0);

 C : in std_logic_vector(15 downto 0);

 D : out std_logic_vector(15 downto 0)

);

end entity MACHINE;

architecture rtl of MACHINE is

begin

.

.

.

end architecture MACHINE;

AB+AC => A(B+C) +

RTL design
RTL

manipulation

Technology

mapping

Gate-level design

in out

clk

REG

&0

0

0

in out

clk

REG

in out

clk

REG

&0

0

0

Figure 8. Simplified logic synthesis flow.

The logic synthesis is performed by a specific synthesis tools. Some of the tools are

designed for FPGA synthesis and some of them are for ASIC synthesis. FPGAs have

fixed resources and area, and also implementation is different compared to ASICs.

Therefore, FPGA synthesis tools intend to utilize the fixed resources to achieve the

user-defined performance goal. ASICs synthesis tools have no fixed resources, so the

area optimization is more important. ASICs are generally running on higher

frequencies than FPGAs, but timing optimization is essential in both cases. [13]

17

3. FPGA PROTOTYPING

In this chapter, FPGA-based prototyping is introduced. FPGA tools and technology

used in FPGA prototyping, prototyping flow and benefits achieved by using FPGAs

in large-scale SoC development are covered. Topics are introduced on the level that is

necessary to understand the aim of the work.

3.1. FPGA technology and tools

FPGAs are reprogrammable silicon chips that provide hardware-timed speed and

reliability. FPGAs have a matrix of Configurable Logic Blocks (CLB) connected

through programmable interconnects and they can be reconfigured at any point of the

design cycle. CLBs include logic gates, Look-Up Tables (LUT) and Flip-Flops (FF).

Today’s FPGAs also contain configurable embedded Static Random Access Memory

(SRAM), high-speed transceivers and high-speed inputs and outputs (I/O). Therefore,

they are an interesting solution in digital HW development. FPGA structure is

presented in Figure 9 below. [14][15][16][17]

Configurable Logic Blocks

I/O ports

Programmable Interconnects

Figure 9. FPGA chip inner structure.

Two largest FPGA design and manufacturing companies today are Xilinx and Altera

[18]. One example of a high performance FPGA family is Xilinx’s Virtex-7 series.

Features of the family are presented in Table 1 below. Virtex-7 FPGA will be

discussed later in this work. [15]

Table 1. Features of Xilinx Virtex-7 FPGA family

Logic

Cells

Block

RAM

(MB)

DSP

Slices

Transceiver

Count

Speed

(GB/s)

Bandwith

(GB/s)

Memory

Interface

(MB/s)

I/O

Pins

2000000 68 3600 96 28,05 2,784 1,866 1200

18

To optimize the implementation different FPGA tools are used. The tools make good

use of FPGA resources and it is equally important as the resources themselves. FPGA

tools include synthesis, partitioning, PAR and debug tools. Comprehensive FPGA

environments exist to centralize the FPGA prototyping. A FPGA prototyping

environment includes FPGA, FPGA tools and required daughter boards. Electronic

Design Automation (EDA) tools are used for similar purposes in case of ASIC.

[17][19]

3.2. FPGA prototyping flow

FPGA prototyping flow consists of two branches; design and verification flow. The

design flow includes HDL coding, the synthesis from RTL to the gate-level,

implementation and FPGA programming. The verification flow includes functional

simulations of RTL and the gate-level model, verification of implemented design and

FPGA environment testing. Figure 10 represents the FPGA prototyping flow. [17][23]

 The FPGA prototyping flow starts from creating the HDL code for the design and

verifying the functionality in a RTL simulator. The code is generated for a FPGA test

bench and might require some changes in clock and reset structures compared to ASIC

code. The HDL code is synthesized into the gate-level model and it is formally verified

to have the correct functionality compared to RTL. If the gate-level model is not fully

functional, changes are made on the RTL code of the design and then it is re-

synthesized into a new gate-level model. [17]

Once the gate-level model has the correct behavior, it is converted into a FPGA

netlist. The netlist is further converted into a FPGA bit stream through technology

mapping and PAR. The FPGA bit stream is verified in Static Timing Analysis (STA)

and timing simulations. STA and the timing simulations are used to check that there

are no timing violations in post PAR design in worst case Process, Voltage and

Temperature (PVT) conditions. [17]

After verifying the FPGA bit stream, it can be programmed on FPGA. The design

is tested in the FPGA environment with real-time inputs and feedback to verify that it

is functional and behaving correctly with real-time I/Os. After verifying the

functionality of the design in the FPGA environment, the ASIC design work towards

ASIC optimized performance and physical fabrication can be started. [17]

19

HDL code

(RTL)

FPGA Synthesis

and PAR

ASIC Design

Optimization and

Physical

Fabrication

Synthesis

(Gate-level)

Implementation

(Mapping and PAR)

Design Flow Verification flow

Functional

verification

Formal verification

compared to RTL

Static Timing

Analysis

Timing simulations

FPGA environment

verification

Figure 10. General FPGA prototyping flow.

3.3. FPGA prototyping benefits in SoC development

SoC verification is complex because its behavior depends on many variables: previous

state, sequence of input signals and system effects of the SoC output, including the

feedback. FPGA prototyping is a way to overcome these difficulties. It has a great

advantage in pre-silicon verification over normal ASIC design flow by being the only

testing environment that gives high performance and accuracy because of real-time

dataflow, early SW testing and re-configurability. The FPGA prototyping improves

the IP reuse and it may save from costly re-spins of flawed designs. FPGA are also

getting faster so some of the designs might be prototyped on the same clock frequency

as they are targeted to be on ASIC. Simplified timeline of FPGA prototyping benefits

in HLS flow is presented in Figure 11. [17][23]

20

HLS Flow

FPGA Prototyping in HLS Flow

Time

HDL code (RTL)

Verification

Logic Synthesis

ASIC

HDL code (RTL)

Verification

Logic Synthesis

ASIC

Software development

Software development
Possible costly and

time-consuming

re-spins

FPGA Verification

Time save in SW

development

Product

ready

Product

ready

Figure 11. Simplified timeline presenting benefits of FPGA prototyping.

The real-time dataflow makes it possible to see immediate effects of real-time

conditions, inputs and feedback on the system. Verifying the system in the real-time

environment minimizes the possible flaws in the design and avoids from the costly

ASIC re-spins. [17]

SW development is one of the major factors affecting the SoC development time.

Testing of it can be started early in the design with specific SW testing tools but the

tools have no real-time interface. The FPGA prototyping improves the SW

development by enabling the testing of software in semi-real-time environment on

FPGA to verify the SW functionality with real-world data. This shortens the SW

development time after the chip fabrication and reduces time-to-market. Ease of re-

configurability of a FPGA supports also both HW and SW development. [17]

The FPGA prototyping environment improves the IP reuse by enabling testing and

verifying the functionality on the current design early on a FPGA. Using IPs generally

reduces cycle time, cost and risk of the design. [23]

21

4. ALGORITHM DESIGN FOR HDL CODE GENERATION

MathWorks HDL coder is a HLS -tool to synthesize MATLAB or Simulink algorithm

model to VHDL or SystemVerilog code. This chapter covers the design principles for

synthesizable MATLAB or Simulink model. HDL synthesis is performed with an

example IP block.

HDL coder uses the designed model, including the user-defined settings and the

target technology files, as input to generate HDL code for both FPGA and ASIC. The

tool has floating point to fixed-point converter built-in so both the floating point and

the fixed-point algorithms are supported, which makes it flexible. However, HDL

coder has some limitations on design principles to be able to synthesize the design into

HDL. These limitations are discussed in the section 4.1 below.

4.1. MATLAB model

MATLAB is generally used for algorithm design of a system for fast simulation and

verification purposes of the behavioral model. The models of telecommunication SoC

IP blocks are generally large, which slows down the simulation. Therefore, algorithms

are written in a way that maximizes the simulation speed. These algorithms may

include processing large vectors of data at once and Object-Oriented Programming

(OOP).

Since SW technology has more degrees of freedom compared to HW, HDL coder

supports only a subset of MATLAB language that is targeted for HW. For example,

synthesis from MATLAB OOP classes is not supported. However, it supports

synthesis from MATLAB System Objects that are specialized objects designed for

dynamic systems [24].

To produce rational HDL code, the algorithm should be written from the HW

perspective. Algorithm models are often written into simulation optimized vector

operations that create parallel structures and copies of combinational logic blocks in

HW when processed by HDL coder. In real-time dynamic systems, input and output

data varies over time, therefore, the system is not always required to process the whole

data in one cycle. Loop structures can be automatically converted to streaming

structures by using loop unrolling. However, parallel structures can be used if the

target is to maximize the speed. To optimize the generated model, the algorithm model

should be written in a way it is desired to be on HW.

An optimized way is to use only the necessary amount of the combinational logic to

perform the logic operations within the timing constraint and multiplexing time-

variant input signals into the circuit. This reduces the area of the hardware significantly

as described in section 2.2.1. Optimization is further covered in Chapter 7.

The first thing when starting to design a model for the HDL code generation is to

verify that data types, operators and control flow statements to be used are supported

by the tool. These are presented in Table 2 below. [25]

22

Table 2. Supported data types, operators and control flow statements by HDL Coder

[25]

Data type Definitions

Integer uint(8, 16, 32, 64), int(8, 16, 32, 64)

Real double, single (for simulation and

some high-end FPGA technologies

supporting floating point data)

Complex created by “complex()” -function

Character char

Logical logical

Fixed point scaled, custom integer (max 128bits)

Vectors unordered, row, column

Matrices supported in the body of the design

Structures supported in the body of the design

Enumerations IP Core Generation, FPGA Turnkey,

FPGA-in-the-loop, HDL

Cosimulation

Arithmetic operators

Binary addition data type logical not supported

Matrix multiplication

Arraywise multiplication data type logical not supported

Matrix power scalar types (exponent must be

integer)

Arraywise power scalar types (exponent must be

integer)

Complex transpose

Matrix transpose

Matrix concat

Matrix index variables must be fully defined

Relational and logical operators all common operators

Control Flow Statements

For no support for nonscalar expressions

If no support for nonscalar expressions

Switch uint(8, 16, 32), int(8, 16, 32), scalar

To create synthesizable MATLAB code, the structure has to be correct. The design

functionality has to be written in functions or MATLAB System Objects that are

targeted for dynamic systems. Sub-functions or System Objects are then called within

a main function to be included in the synthesis. Handshaking/synchronization between

23

blocks, functions, variable indexing and also signal buffering should be coded in the

MATLAB design in a way it is desired to be in RTL.

Register modeling is done through “persistent” -variables. The variables that are

wanted to save their states are defined in MATLAB function as persistent and these

variables generate registers into RTL. In case of System Objects “static” –variables

have the same behavior as “persistent” for MATLAB functions. HDL coder generates

Read Only Memory (ROM) automatically into RTL from matrices and LUTs that

exceed the user defined Random Access Memory (RAM) mapping threshold in the

tool. Persistent array variables in the model are mapped to RAM by default to

potentially reduce the area on the target device. The persistent array variables generate

registers in RTL if they are not mapped to RAM.[25]

Generic variables cannot be trivially generated with HDL Coder. Lack of the generic

variables may have negative influence in the IP reuse since the generated VHDL

blocks are not easily scalable and have to be re-generated when signal bit widths or

any scalable parameters are modified.

Two features of a model, that coding style has a great effect on, are speed and area.

Essentially, increasing the area optimization decreases the speed and vice versa. This

is not always the case but if the code is written rationally, it is a good rule of thumb.

To minimize the area, it is desired to use as few arithmetic logic units (ALU) as

possible, especially large multipliers or dividers due to their large size on chip. This

method requires utilizing registers, multiplexers and control logic around ALUs to

cover the desired functionality. This means dividing parallel operation in smaller

pieces and looping these in sequences with fewer ALUs. The area optimization

increases latency always and adds propagation delay in the design if slow

combinational blocks such as multiplexers are used cover the parallel operations.

However, the area optimization does not necessarily affect the functionality when the

structures do not increase the critical path delay, therefore, become bottlenecks of the

design. Figure 14 below illustrates the difference between the speed and area

optimization with a simple multiplication circuit.

data_in

clk

clk

data_out

Latency:

Small

Propagation

delay:

Small

Area:

large

data_in

clk

sel sel

clk

data_out

Control

Logic
FSM, CTR

etc.

Latency:

Large

Propagation

delay:

Large

Area:

small

Figure 12. A simple multiplication circuit in parallel and state controlled serial

design.

When starting the coding, the target resources have to be known to be able to create

a design that meets the requirements. This means that knowing the coding style that

generates parallel or serial structure is essential. In MATLAB, parallel structure is

generated if there is no state control utilizing arithmetic logic in a loop. This means

24

writing the arithmetic statements one below another. More area optimized structure is

possible to achieve by using the loops together with the variable indexing and control

flow statements to share the same ALUs with multiple operators. The variable

indexing and control flow statements do not necessarily create serial structure and they

can be used for parallel structure also. An example of parallel and serial structure in

MATLAB algorithm is presented in Appendix 1. HDL coder is able to convert looping

structures into streaming structures.

Hardware target, ASIC or FPGA, affects the model’s area and speed optimization

requirements. For ASIC design the general approach is to minimize the area of the

chip by meeting the speed requirements. An FPGA, on the other hand, has fixed

resources and the design is optimized to utilize all the available resources to maximize

the performance. The FPGA resources are introduced in section 3.1. In this study, the

IP block is targeted to be prototyped for FPGA environment testing but the final chip

target is ASIC, therefore, both scenarios are taken into account.

The design of MATLAB algorithm block can be feed through type or can have

registered output depending how output is assigned inside the block. If the output is

assigned in the code before the functionality that manipulates the output’s state, a

register is automatically generated in the output of HDL version. If the output is

assigned after the functionality, the block will have the feed through structure, thus

increasing data path delay on the top level. This is important to take into account when

writing larger designs where the path delays are critical. The example codes of these

are represented in Table 3.

A feature that limits MATLAB for being used for large designs is that it has no

concept of time. Therefore, it is not compatible with multi-rate designs using multiple

clock domains.

4.2. Simulink model

Simulink is a graphical design tool that uses library blocks, MATLAB functions and

System Objects to perform certain functionality. Simulink library includes vast

selection of hardware optimized blocks and cover some of the functionalities needed

in SoC development. User-defined MATLAB function blocks and System Object

blocks can be used to create design specific functionalities or to reutilize existing

MATLAB algorithms. Simulink supports the multi-rate designs, therefore, it has an

advantage over MATLAB when a design has more than one clock domain. Simulink

is used to create the example IP block in this work.

The example IP block is a system that scales and limits the power of IQ-data in a

telecommunication SoC. The block is shown in Figure 13. The system is a multi-

carrier system that processes IQ-data. It applies data scaling and power limitation

carrier-wise. The design contains multiplication, addition, subtraction, multiplexing,

state control, LUTs and accumulation, thus will create versatile HDL design.

25

Rounding and

Saturation

Power

Measurement

and

dB conversion

Gain Correction

Control
max

+

Linear

conversion

and

Saturation

IQ-data input IQ-data output

I-data

Q-data

Configurable

Parameters

Offset
Power

Limit

Carrier

Power

Gain

Correction

Value

Corrected

Data

Figure 13. IQ-data scaling and power limitation system.

The IP block is built in Simulink by writing the algorithm with fixed-point data types

in MATLAB function blocks and System Objects. The Simulink library components

such as LUTs, delay and data type conversion blocks are used to complete the

functionality. A test bench in Simulink is built by connecting all input variables to

Device Under Test (DUT) and set their values manually or import them from the

workspace. The data is imported as streaming data and the configuration parameters

are constant values. In this example, the configuration parameters are set to limit the

output below value 1. The test bench configuration is shown in Appendix 2 and an

example simulation of the design is shown in Figure 14.

26

Figure 14. IQ-data input and output of power scaling block.

Creating hardware like design in Simulink using the default settings may increase

simulation times compared to a simulation speed optimized MATLAB algorithm.

However, Simulink includes acceleration methods to improve the simulation speed

and partial quantization can also be used. Simulink has two acceleration methods,

Accelerator and Rapid Accelerator, to improve the simulation times.

Accelerator mode generates and links code into MATLAB Executable (MEX) S-

function written in C-language and uses this for the simulation. The code is stored for

later simulations. In Accelerator mode, the target code methods are separate from

Simulink software and MEX-files communicate with Simulink and MATLAB

software via Application Programming Interface (API). The executable is run in the

same process with Simulink and MATLAB. [26]

Rapid Accelerator mode differs from Accelerator mode by taking the solver with

the target code methods to generate standalone executable located outside Simulink

and MATLAB software. External mode is used to communicate with Simulink.

Simulink and MATLAB are in one process and standalone executable is run on another

processing core if available. [26]

The partial quantization defines only part of the design signals in fixed-point type

and leaving the rest in floating point type. Defining only top-level inputs, outputs and

coefficients in fixed-point format reveals roughly 80% quantization effects, thus is

moderately good for verifying the algorithm behavior. Leaving sub-level components

in floating point format improves the simulation speed compared to fully quantized

model because the floating point data is lighter to process for MATLAB. The partial

quantization could be used instead of scaled integer types as some of the simulation

optimized algorithms use. Furthermore, it might result in even faster simulation times

due to removal of scaling operations of the data.

For HDL code generation Fixed-point Converter can be used to convert floating

point data types into user-defined fixed-point types. Solver setup can also affect the

27

simulation speed. “MultiTasking” option can be used to speed up the simulation but

it’s not supported for HDL generation. For HDL code generation “SingleTasking”

option has to be used.

4.3. HDL code generation from model

Completed and behaviorally verified algorithm design can be synthesized into RTL.

HDL coder takes MATLAB or Simulink design as input and generates either VHDL

or Verilog from it. In Simulink case all blocks inside the top-level design are

synthesized into separate VHDL-files and are imported as components on the top-level

VHDL. An example of the code generation principle is shown in Figure 15. The top-

level VHDL-file includes design I/O ports, internal signal declaration, port mapping

of the components and assigning internal signals into the I/O ports.

Component1

Component5

Component3

Component4

Design

Component2

Component4.vhd Component2.vhd Component3.vhd Component1.vhd Component5.vhd

Design_top_level.vhd

Figure 15. HDL code generation principle from Simulink/MATLAB Design.

Generating HDL code from a MATLAB design follows the same principle as shown

above if sub-functions are written in separate MATLAB function files and are called

within a main function. If all the functionality is written in a single MATLAB function

or System Object, the whole design is synthesized into a single VHDL-file.

The target specific parameters described in section 2.2 can be configured by the user

in HDL coder. After setting the parameters, HDL coder performs checks for global

28

settings, algebraic loops, compatibility and sample time to verify that the design is

synthesizable. Depending on the design size, the RTL synthesis takes from a few

seconds to a few minutes. The output is human readable HDL code making it really

interesting from the point of RTL coding by automating the RTL code generation. The

design flow times are introduced in section 2.1. If changes are made on the algorithm

design, a new HDL code can be rapidly generated. The generated HDL code also

provides visibility backwards to the algorithm model from VHDL-file trough links that

take the user to corresponding MATLAB function. It also preserves all the comments

of the MATLAB function into VHDL. The example MATLAB code and generated

VHDL code example are shown in Appendix 3.

HDL coder generates traceability, resource utilization, critical path and optimization

reports for the RTL model automatically but user can also disable the report

generation. In Figure 16, is a high-level resource report of the example design. The

user can also view detailed resources block by block. The critical path of the VHDL

design can be back annotated in Simulink model and this is presented in Figure 17.

Figure 16. High level resource report of the example design.

Figure 17. Critical path of the VHDL design highlighted in Simulink model.

Table 3 below presents good design practices and coding styles to create

synthesizable HDL. The table includes the findings done during this work and might

not include all the coding rules or methods to improve the design flow.

29

Table 3. General coding and simulation rules and methods for HDL code generation

Coding

/simulation style

or method

Description Code example

Avoid using

normal

MATLAB

Objects

No support by HDL Coder.

System Objects can be used to

create similar structures.

Use streaming

data

Streaming should be used,

when possible, except if the

data to be processed is

vectorized

One main

function and call

sub-functions

inside

To include all the

functionality in HDL every

function should be called

inside the same main

function.

%main function

function main(x, y, z)

 %call sub-function #1

 out1 = sub1(x)

 %call sub-function #2

 out2 = sub2(y, z)

end

To create

registers into

design use

“persistent” -

variables

Defining a variable as

persistent generates a register

from it. For example, data

buffering or value storage.

Matrices and LUTs that

exceed user-defined RAM

mapping threshold are

mapped to ROM. Persistent

array variables are mapped to

RAM by default.

%define variable or array

persistent value_reg;

%define the type e.g.

%fixed-point variable

%signed with one integer bit

%and one fraction bit

value_reg=fi(0,1,3,1);

%array of four fixed-point

%variables

value_reg=fi(zeros(1,4),1,3,1);

Use at least one

delay block in a

Simulink

feedback loop

HDL Coder requires at least

one delay block in feedback

loop for HDL code

generation.

Use Simulink for

multi-rate

systems

MATLAB supports only one

clock rate in the system but

Simulink supports multiple

rates.

Use state

controlled

structures and

loops around

arithmetic

functions to

minimize area

State controlled structures

create multiplexers and

registers, but utilize little

arithmetic logic. Decreases

design speed.

if (start == true)

 for i = 1:4

 mul(i) = x(i)*y(i);

 end

end

30

Use parallel

arithmetic

operations to

increase design

speed

Parallel structures minimize

delays, but increase design

size on chip.

if (start == true)

 mul(1) = x(1)*y(1);

 mul(2) = x(2)*y(2);

 mul(3) = x(3)*y(3);

 mul(4) = x(4)*y(4);

end

Use LUTs for

complex

arithmetic

operations

LUTs are an area and speed

efficient way to replace

complex and large arithmetic

logic when the range of

values is known. For

example, logarithmic

operations.

Different types of LUTs can

be found from Simulink

library

Add +1 to

MATLAB

indexes to utilize

same test bench

for RTL

simulation

MATLAB indexes start from

1, but VHDL indexes start

from 0 so user should add +1

to MATLAB indexes inside a

model to be able to utilize

same test bench with RTL

model (If test bench indexes

are set to start from 0).

Compiler automatically

removes the “+1” from the

HDL code.

if (ct(indx+1) < limit)

 mul = x(indx+1)*y;

end

Assign values

into output

before operation

to create output

register

If a value is assigned into

output before actual operation

that manipulates signal value,

HDL coder creates a register

in output.

output = mul_reg;

if (start == true)

 mul_reg = x*y;

end

Assign values

into output after

operation to

create feed

through structure

If a value is assigned into

output after actual operation

that manipulates signal value,

HDL coder generates feed

through structure in output.

if (start == true)

 mul_reg = x*y;

end

output = mul_reg;

Use signal

specification

block in

Simulink to

define data type

in a feedback

loop utilizing

signal type

inheritance

If Simulink gives an error for

detecting incorrect data type,

use signal specification block

to force data type. This can

occur when signal type is

inherited from previous

blocks in a feedback loop. It

doesn’t create any additional

HDL code.

Use floating

point data types

for faster

simulation

Floating point data types are

faster to simulate and can be

converted automatically to

fixed-point data types by

Fixed-Point Converter.

31

Use Simulink

simulation

accelerators to

improve

simulation speed

Accelerators in Simulink

utilize MEX-files to separate

target code from Simulink

software and run them

separately but communicating

with Simulink/MATLAB

trough API. This provides

improvement in simulation

time.

Use “single

tasking mode” in

Simulink for

HDL code

generation

“Multi tasking” mode can be

used to improve simulation

speed, but HDL Coder

requires single tasking mode.

32

5. HDL CODE VERIFICATION

In this chapter, HDL code verification possibilities that the MathWorks workflow

provides are discussed. General SoC verification flow is shown in section 2.3. HDL

Coder provides two options for RTL simulation; co-simulation and RTL test bench

generation.

5.1. Verification in RTL simulator

Co-simulation automatically generates stimulus for a HDL model from

MATLAB/Simulink test bench and runs a RTL simulator in the background. Co-

simulation compares output of the code generation model of the algorithm to the HDL

model’s output. HDL Verifier is required to be installed. The HDL model is simulated

in the background in user-defined RTL Simulator and the output is imported in

MATLAB. Co-simulation compares the models bit-accurately and cycle-accurately.

Simulation configuration is presented in Figure 18 below. [27]

MATLAB test bench

 MEX-function

MATLAB

VHDL design

HDL Simulator

Output

Arguments

Input

Arguments
Stimulus Response

OutIn

Figure 18. HDL co-simulation configuration.

In co-simulation, configuration MATLAB functions as a server and HDL Simulator

as a client. MATLAB/Simulink test bench signals are connected to the VHDL design’s

input ports and the design’s output ports are connected back to MATLAB with proper

arguments. Test bench MEX-function feeds the HDL Simulator with the stimulus

from the MATLAB/Simulink test bench and receives the response from the VHDL

design.[27]

Error is calculated from the differences of code generation model simulation and

RTL simulation. The error comes mostly from quantization inaccuracies and if the

algorithm model is written with fixed-point data types the error should be zero. The

comparison is done on the output ports and it is a rapid way to verify HDL design

correctness every time the algorithm is changed. Co-simulation window of the

example design is presented in Figure 19.

33

Figure 19. Co-simulation window where error between Algorithm model and HDL

model is shown.

The other way to simulate RTL is to generate a HDL test bench with HDL coder

from MATLAB/Simulink test bench and simulate it manually in a RTL simulator with

the generated HDL design files and HDL test bench. Generating the HDL test bench

takes roughly two times longer than the entire co-simulation, thus the user have to

manually verify the correctness of design functionality in the RTL simulator. Manual

verification further increases the verification time described in section 2.3. The

automatic HDL code generation from the algorithm model and the RTL functional

verification against the algorithm can provide great improvement in prototyping times

and efficiency. It also moves the verification focus on the algorithm model. Therefore,

it is suitable for the SoC prototyping purposes.

5.2. Additional RTL verification methods

HDL Coder has support also for other RTL verification methods such as lint checking,

code-coverage analysis and verification with validation model described in section 2.3.

The code-coverage analysis is done on the algorithm model and since HDL Coder

generates the RTL from the algorithm there is no need for RTL code-coverage. The

code-coverage checks that all the functions defined are used, all statements are

executed, all branches are executed at some condition and all Boolean expressions are

evaluated to true and false. This is a fast way to check if there are some functions that

are not executed in any conditions.

HDL Coder supports 3rd party lint checking tools. These are Ascent Lint, HDL

Designer, Leda and SpyGlass. By enabling the lint checking, the tool generates a script

34

for specified lint tool and user can also configure lint checking parameters to meet the

requirements. The lint checking is used to check suspicious behavior of the model such

as division by zero or assigning values to a variable before variable declaration. [25]

HDL Coder provides validation model verification method to verify functional

equivalence of the original algorithm and the code generation model. Difference to the

co-simulation is that this compares the original model to the code generation model

over comparing the code generation model to the RTL model. Both models are fed

with the same stimulus on each time step and output is compared similarly. The

example design’s validation model simulation output is shown in Figure 20 below.

Figure 20. Validation model simulation output.

The flow has vast support for different RTL verification methods and all of them

can be controlled within one tool. This provides improvement in prototyping flow

clarity and may slightly improve the design flow times by automating the 3rd party tool

usage. For very detailed verifications with 3rd party programs, it is easier to use the

tools manually with Graphical User Interface (GUI) due to better visibility to the

configuration parameters.

35

6. FPGA SYNTHESIS AND FUNCTIONAL VERIFICATION IN

FPGA ENVIRONMENT

In this chapter, VHDL model is first synthesized to a gate-level design and further

synthesized into a FPGA programmable model. Synthesis results of the hand-written

and the HDL coder generated VHDL are compared. Furthermore, the design is

programmed on FPGA and the functionality is verified. FPGA structure, prototyping

and verification were introduced in sections 3.1 and 3.2.

6.1. Logic synthesis and comparison

The logic synthesis, introduced in section 2.4, is performed after the HDL model has

proper functionality. The flow does not include own synthesis tool but it supports the

following tools: Xilinx ISE, Xilinx Vivado, Synopsys Synplify Pro, Altera Quartus II,

Mentor Graphics Precision and Microsemi Libero. The user can choose to use any of

the listed tools depending on the requirements. HDL coder generates a tool specific

script which is used to start the selected tool and synthesize the generated RTL code

with the user-defined settings. Synthesis time and result depends on the VHDL model

and the chosen synthesis tool. In this work, Xilinx Vivado was used to synthesize the

hand-written model and the HDL coder generated model of the example IP. Hardware

resource utilization results are shown in Table 4 below.

Table 4. Hardware resource utilization results of the hand-written and the HDL coder

generated IP

 HDL Coder generated IP (targeting FPGA) resource

utilization compared to hand-written IP

Flip-Flops 81,1 %

LUTs 54,6 %

Memory LUTs 60,9 %

I/Os 54,0 %

Block RAMs 16,7 %

DSP48s 100 %

Clock Buffers 100 %

The algorithm model used for the HDL code generation has roughly 80 % of similar

or identical functionality of the hand-written IP so the synthesis results cannot be

compared accurately. However, as can be seen from Table 4, The HDL coder

generated RTL utilizes less resources than the hand-written model. Synthesis tools

provide also an area report presented in logic cells. The synthesized model uses 61,7

% of the area of the hand-written model, thus seems to follow similar trend with the

resource utilization report. Therefore, it is beneficial for FPGA based rapid prototyping

due to faster iteration times compared to hand-writing by automating HDL code

generation. It also creates synthesizable HDL and logic in reasonable size.

36

Maximum frequency for design was also compared and derived from the critical

path delays received from the synthesis. The critical path delay for the hand-written

model was 20,198 ns, including 2,597 ns of logic delay and 17,601 ns of route delay.

The critical path delay for HDL Coder generated model was 7,781 ns, including 4,382

ns of logic delay and 3,399 ns of route delay.

The maximum frequency was derived from these values using the following

equation

 𝑓𝑚𝑎𝑥 =
1

𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 (1)

where 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is critical path delay.

The hand-written model is able to run at 49,5 MHz and the generated model at 128,5

MHz. The hand-written model was targeted on ASIC and the generated model on

FPGA so the maximum frequencies are not fully qualified to be used for comparison.

However, it can be said that by following the good algorithm coding rules rather good

design speed can be achieved with the HDL Coder workflow.

37

6.2. FPGA environment verification

FPGA verification was done with FPGA-in-the-loop (FIL) configuration using the

generated design and Altera Arria V Development Kit. Altera Development Kit

utilizes two Arria V GT FPGAs and all the common I/O interfaces required for FPGA

development. It provides a sufficient platform for testing IPs but might be slightly light

for system level testing. High-performance prototyping environment would be better

for prototyping larger SoCs and it is discussed in section 8.3.1.

The FIL flow performs the whole FPGA prototyping flow introduced insection 3.2

and it provides capability of using MATLAB or Simulink for testing the design in a

real hardware environment. After HDL code generation it performs logic synthesis and

generates a FPGA programming file with target FPGA specific files. FPGA is further

programmed through GUI through either Ethernet or JTAG connection. The FPGA

programming file can also be generated from the hand-written RTL by using FIL

wizard [27]. In this example, logic synthesis was done by using Altera Quartus II.

Programmed FPGA is running in real hardware environment with MATLAB or

Simulink stimulus. Data is streamed through FPGA chip and output is compared to the

algorithm simulation output. FIL configuration is shown in Figure 21.

FPGA board

design

Algorithm

design

MATLAB or

Simulink

stimulus

Comparison
Display

results

JTAG/Ethernet

Interface

Figure 21. FPGA-in-the-loop simulation configuration.

The FIL output is a similar window as in co-simulation in chapter 5.1. The output

data from the FPGA board and the algorithm is presented as waves and the difference

between the outputs is compared in an error plot. The FIL simulation window is shown

in Figure 22. In this example JTAG connection was used for data streaming. For larger

simulations Ethernet is better to use instead of JTAG for higher data rate.

38

Figure 22. FPGA-in-the-loop simulation window presenting error between DUT and

FPGA.

From the simulation results in Figure 22, it can be seen that the FPGA model has

the same functionality as the algorithm model created in the beginning of the work.

The results verify that the FIL flow produces improvement for rapid IP prototyping

compared to manual verification in FPGA environment by decreasing the verification

times and also making the prototyping flow faster and easier from algorithm into

FPGA prototype. The flow provides also additional target workflows such as Generic

ASIC/FPGA, FPGA Turnkey, Simulink Real-Time FPGA I/O and IP Core Generation.

FPGA-in-the-loop was the only workflow used in this work.

39

7. HDL CODE OPTIMIZATION

HDL Coder provides optimization features that user can apply on a design.

Optimization features include adding pipeline registers, resource sharing and loop

unrolling introduced in section 2.2.1. In this study, optimization was done in algorithm.

Tool configurable optimization features were tested on the example design but were

not taken into use.

7.1. Optimization for FPGA target

HDL coder allows user to specify optimization features on top-level or on a single

block. HDL Properties window allows the user to set input and output pipeline register

count, sharing factor and streaming factor. Setting “Distributed Pipelining” option

“on” lets HDL Coder to distribute existing or added pipeline registers across the

selected block to improve the timing characteristics. “Constrained Output Pipeline”

count can be set to redistribute existing delays within your design to meet the

constraints. Registers specified by “Constrained Output Pipeline” are not affected by

“Distributed Pipelining”. RAM mapping can be also used to map registers on RAM to

save area. It can be specified on every block separately and it only maps those registers

to RAM that are larger than the threshold value. HDL properties window is presented

in Figure 23 below.

Figure 23. HDL Properties window to set optimization parameters.

40

Using built-in optimization features efficiently requires understanding the design

and the hardware implementation. Adding unnecessary pipeline registers increase s

circuit delay and using sharing or streaming options on already optimal blocks may

increase the design complexity and decrease the design quality. Therefore, if algorithm

is designed with optimized functions, HDL Coder’s optimization features have no

effect but may reduce the quality. In this work, the example IP was already optimized

on function level, therefore, no optimization features were used. An example of bad

RAM optimization result is shown below.

For example, persistent variables configured in a “for”-loop including nested

conditional statements utilized more resources when RAM mapping was enabled than

without. Illustration of this structure is shown in Appendix 4. Using this kind of

structure uses more than one clock cycle for configuration process so when RAM

mapping is enabled it requires additional pipeline registers and some logic around it to

access RAM correctly. Figure 24 below shows the whole design resources used when

RAM mapping was enabled on a block using the structure described above. Red values

in the figure indicate the increase of resources compared to the design that had RAM

mapping disabled. The resources used without RAM mapping can be found from

Figure 16.

+ 28

+ 270

+ 1

+ 136

+ 0

Figure 24. High level resource report when RAM mapping is enabled.

Figure 24 shows that now one RAM was generated but it also more than doubled

the amount of registers and multiplexers, and also generated additional

adders/subtractors. To be beneficial, this should have decreased the amount of registers

utilized, however, it only made the HDL design worse.

In this work, the example design was not optimized by built-in optimization methods

but the algorithms were written in a way to optimize timing and area for FPGA target.

The optimization was done by following the good coding rules introduced in section

4.3.

The first version of the design had feed-through type blocks. Signals were assigned

to the output at the end of the algorithm. This generated long data path delays over

some the blocks because the signals were registered only in a few parts of the design.

By creating registers into outputs of each block the data path delays decreased and

none of the generated blocks were on critical path anymore. LUTs’ delay became

dominant on critical path. The critical path of the design is shown in Figure 17. The

generated design did not need any further optimization to meet FPGA timing

requirements.

41

7.2. Optimization for ASIC target

VHDL targeting ASIC has different requirements than one targeting FPGA. Timing

requirements are stricter than for FPGA and path delays are critical. The original hand-

written model of the example design was targeted for ASIC running at clock frequency

of 491 MHz.

The FPGA targeted version of generated model was able to run at 128,5 MHz so

further optimization was required for ASIC target. Optimization was started by

running ASIC synthesis targeting for 491 MHz frequency to point out the critical paths.

The synthesis tool used was Synopsys Design Compiler. The timing report of the

original generated design is shown in Figure 25.

Figure 25. ASIC synthesis timing report of the original model.

As can be seen from Figure 25, in both timing path groups, there exists negative

slack which means that some of the data paths are too slow and the design is not

functional with the clock frequency. Either the clock frequency has to be decreased or

data paths have to be shortened to make the design work on the desired clock

frequency. Area of the generated model compared to the hand-written model is

presented in Table 5 below.

Table 5. The original model area compared to the hand-written model

Area Percentage of the hand-written model

Combinational 128,9 %

Sequential 51,6 %

Total 113,6 %

The timing report also points all the paths breaking the timing requirement. An

example of this is presented in Appendix 5. From the report, it can be seen the data

required time and the data arrival time, thus all the logic between the registers. In this

case, data paths were to be shortened by adding register in combinational structures.

This increases area but improves the maximum clock frequency.

Optimization was started from the longest data paths that were in blocks including

multiplication, rounding and saturation. To shorten the data paths, pipelining had to be

added between the logic as described in section 2.2.1. The pipelining in this case was

done by dividing the blocks in smaller blocks with registered outputs and this

42

generated registers after each larger logical operation mentioned above. In the

Simulink model, this was done by writing the MATLAB algorithms again in smaller

serial blocks using persistent variables to generate registers in between of the blocks.

Illustration of the scenario is shown in Figure 26 below.

Multiplication Rounding Saturation
Data input

register

x ns

Data

output

register

y ns z ns

Path delay

= x + y + z ns

Multiplication Rounding Saturation
Data input

register

Data

output

register

reg reg

x ns y ns z ns

Path1 delay

= x ns

Path2 delay

= y ns

Path3 delay

= z ns

Figure 26. Illustration of adding registers in a long logic path.

Another structure causing long data paths was when indexed input variables were

used in conditional statement. To shorten the data paths, the indexed variables were

selected and registered before the usage in a functional block. All the other input

signals to the original block were delayed by “Unit Delay”-blocks to generate registers

and one clock cycle delay for synchronization. The variable selection was done with

“Index Vector”-block. This is presented in Figure 27.

43

Variable indexing done

inside the block

Variable indexing done

outside the block

Unit Delay blocks to

generate one clock

cycle delay and

register in VHDL

Figure 27. Illustration of performing variable indexing inside and outside of a

functional block.

Using these two techniques on the design improved the ASIC synthesis results. The

timing report with the more ASIC optimized model is presented in Figure 28.

Figure 28. ASIC synthesis timing report of the optimized design.

44

From Figure 28, it can be seen that all the signals in timing path group “IO_Clk” are

meeting the requirements. In timing path group “clk”, the critical path slack is roughly

one fifth of the original slack and also the total negative slack decreased into around

one twentieth of the original. However, the model is not meeting the timing

requirements and further optimization would be required. Due to lack of time, no

further optimization was done but it seems like the flow is capable of generating ASIC

level HDL code in speed wise.

During the ASIC optimization, also some combinatorial logic structures were

optimized by forcing signals in blocks to certain data types and bit widths. In some

cases, if the signals are not clearly declared in MATLAB function or System Object

HDL Coder may generate unnecessary multiplexing and rounding structures. Example

of this is presented in Appendix 6. ASIC optimized design provided better area report

than FPGA optimized design. The area of the ASIC optimized design compared to the

hand-written model is presented in Table 6.

Using Simulink library components saves from creating unnecessary structures in

the HDL. The components are resource optimized for HW generation and should be

used to model all the parts of the design that can be trivially made. If the design

includes arithmetic operations or other structures that cannot be trivially built by the

library components, the user can write the algorithms in MATLAB functions and

System Objects. This kind of hybrid flow also generates synthesizable VHDL.

Table 6. The ASIC optimized model area compared to the hand-written model

Area Percentage of the hand-written model

Combinational 68,5 %

Sequential 45,5 %

Total 70,7 %

Table 6 presents that optimization improved the area results in both combinational

and non-combinational area. Increasing pipelining should have generated more non-

combinational resource but together with optimized combinational structures it

actually removed some of the earlier unnecessary registers from the design.

The results prove that the flow is well suited to produce not only prototyping HDL

for FPGA target but also fast and area effective HDL for ASIC target. However, for

ASIC target, the model has to be written in Simulink or MATLAB very similarly as it

would be written in RTL. Using the flow for ASIC requires RTL knowledge from the

designer.

45

8. DISCUSSION

In this chapter, MathWorks HLS flow for rapid prototyping is discussed and compared

to general FPGA flow introduced in section 3.2. Design flow, verification flow, design

quality and future development are evaluated.

8.1. Performance and time usage from algorithm to FPGA prototype

HDL Coder generated VHDL surprises with it is performance shown in Chapter 6. The

generated code has good FPGA synthesis results by utilizing fewer resources than the

hand-written model and also being able to run on higher clock frequency on FPGA.

Moreover, generated code is human readable and includes comments from MATLAB

algorithm and traceability backwards to MATLAB/Simulink model through links.

 Below, is presented the time usage of each phase of the design cycle. The original

algorithm had to be completely rewritten to produce reasonable RTL. Moreover, the

work was done without previous work experience of algorithm coding, RTL coding,

logic synthesis or FPGA prototyping. Verification was done only by co-simulation and

FIL described in sections 5.1 and 6.2, no other time consuming verification methods

were used. All FPGA technology, files were provided so there was no need to manually

setup new FPGA for logic synthesis. These should be taken into account when

analyzing design flow times. Relative design flow times are presented in Table 7.

Table 7. Time usage from the example algorithm into FPGA prototype

Phase Algorithm Verification Logic

Synthesis

(FPGA)

FPGA

verification

Total

Time(weeks) 6 (60 %) 1 (10 %) 1 (10 %) 2 (20 %) 10 (100 %)

Generated VHDL code quality seems feasible for prototyping. If HDL Coder is able

to produce similar quality HDL as in the example case for other designs, it reduces

design flow times, therefore, improving the SoC development flow. Code generation

also reduces RTL verification times because in ideal case generated code is bit-

accurate, cycle-accurate and flawless design that can be synthesized into FPGA model.

RTL verification methods and 3rd party tools support improve the verification times

slightly compared to the manual flow. On the other hand, verification work on the

model is increased, but iteration speed from the algorithm to RTL is improved. In

Figure 29 below, is shown an illustration how the HLS flow could improve the FPGA

prototyping flow and in Figure 30 is illustrated the effect on the whole ASIC design

flow time.

46

FPGA Prototyping with HLS Flow

Time

HDL code (RTL)

Verification

Logic Synthesis

ASIC

Software development

FPGA Verification

Time save in SW

development
SoC

ready

FPGA Prototyping with MathWorks HLS Flow

HDL code (RTL)

Verification

Logic Synthesis

ASIC

Software development

FPGA Verification

Time save in SW

development
SoC

ready

Time save in

verification

Figure 29. Possible effect of MathWorks HLS flow for FPGA prototyping flow time.

MathWorks HLS Flow

Manual Flow

Time

Algorithms

Reference model

RTL

Verification

Logic Synthesis

ASIC

ASIC

Time save through

code generation and

less exhausting RTL

verificationValidation

Verification work

focus moving to

reference model

Rapid

iterations

RTL

Algorithms

Verification

Logic Synthesis

Reference model

Validation

Figure 30. Possible effect of using MathWorks HLS flow for ASIC design flow time.

From the figures above, it can be said that using the workflow may have some actual

benefit on design flow times and may be feasible for FPGA prototyping. The actual

ratio of benefit is hard to derive since the flow was tested only with one example block

and functionality or effectiveness with all type of algorithms cannot be guaranteed. To

verify this, requires using the workflow with more thorough, actual large prototyping

case.

47

8.2. Code generation targeting production quality

Production quality means HDL that is such a quality that can be used for production

and needs no further optimization. HDL Coder can produce production quality RTL at

least when creating common sequential and combinational logic structures. This

means that HDL Coder can be used to create some parts or the whole IP targeting for

production.

To achieve this requires knowing good algorithm coding rules in MATLAB and also

understanding what structures are good in RTL. Table 8 below shows some methods

to fine tune algorithm to produce high quality RTL.

Table 8. Fine tuning methods for targeting production quality RTL

Production Quality Target Method

Minimizing critical path delay to

maximize operating frequency

Adding registers to output ports of design

blocks or into long logic paths. This can be

done either by adding them trough persistent

variables in the algorithm or using HDL Coder

optimization methods.

Loosen delay on unnecessarily

fast data path for area

optimization

Removing registers from algorithm on data

paths that meet timing requirements without

working on high frequency.

Minimizing signal bit widths to

improve performance and area

optimization

Defining signal bit widths to precisely cover

signal range in fixed-point data types in

algorithm or Fixed-Point Converter.

Minimize clock enables for area

optimization

By default, HDL Coder maps registers with

clock enable, enable “Minimize clock enables”

feature to reduce the amount of clock enable

logic if design contains registers without clock

enables (Cannot be used together with resource

sharing, RAM mapping or loop streaming).

Use RAM mapping for larger

registered variables for area

optimization

Set ”RAM mapping threshold” to a value that

registered variables with greater bit width are

mapped to RAM rather than to registers.

Use monotonically increasing

loop counters for area

optimization

Set loop counter increments to 1, increments

other than 1 can require additional adders in

hardware.

Maximize performance by

utilizing Simulink library blocks

The library components are optimized for

hardware target and are less risky to use

compared to MATLAB functions or System

Objects.

By following these methods, it is possible to achieve good quality in RTL that can

be used if not completely at least partly for production. This feature shows future

potential for automating HDL generation straight from the algorithm without any

manual work. When the HLS tools are mature enough to reliably produce production

quality HDL, it will have a great impact on design flow times by speeding up the design

cycle in a half or more of the current cycle.

48

8.3. Future development

In this section, future development to improve the flow for SoC prototyping is

discussed. Integration with comprehensive FPGA environment and IP packaging with

generic interface are covered.

8.3.1. Future view with high-performance FPGA environment

MathWorks HLS workflow does not support all prototyping environments by default

but it has an API to connect new FPGA boards by user. Support for high-performance

FPGA environments is required to enable better performance for ASIC prototyping

and especially for large scale SoC system level prototyping.

FPGA prototyping environments differ from general FPGA boards by including

complete toolset and versatile connectivity. They generally utilize a powerful FPGA

and provide a lot of memory and I/O resources, and a design might not require

partitioning in smaller pieces. Therefore, they suit well for SoC level prototyping. One

example of high-performance environment is Synopsys HAPS, which utilizes Xilinx

Virtex-7 FPGA. As an example, HAPS’s benefits compared to general FPGA boards

are shown in Figure 31.

HAPS General FPGA Boards

Versatile I/O

interfaces

FPGA resources

(system level

prototyping)

ProtoCompiler

ProtoCompiler

toolset

Multi-FPGA

scalability

Figure 31. HAPS prototyping environment compared to general FPGA boards.

HAPS prototyping environment consists of HAPS system, ProtoCompiler software,

host PC and peripherals. The prototyping environment provides high-performance

tools and connectivity to improve ASIC prototyping. [20]

Integration of a high-performance FPGA environment into MathWorks HLS flow

improves its performance for SoC prototyping flow by increasing the resources that

can be used for the design: more memory and I/Os, higher operating frequency and

better connectivity. Not only the IP testing will improve, but this could make it possible

to do system level prototype verification.

49

8.3.2. IP packaging and RTL verification with existing test bench configuration

IP packaging with common interface is one key thing for SoC prototyping. It provides

connectivity between all designed IPs and makes the blocks easy to implement in a

design. Generic variables in IPs HDL code provide scalability for the block depending

on the design.

The example design was meant to be packaged with Advanced eXtensible Interface

(AXI) interface to provide a possibility to implement the generated block in existing

design. Together with generic variables, this would have provided the possibility to

test the generated model in RTL simulation with the existing test bench in actual

design. AXI interface packaging and generic variables generation were left out of the

scope due to lack of time.

This should be implemented and tested in the future to verify that common interfaces

can be generated and are functional. Illustration of the IP packaging with generic

interface and RTL verification configuration is shown in Figure 32.

Block 1
Generated

block

IP
Generic variable

values

Generic

interface

components

generic

interface

Existing

test bench

Stimulus Output

Figure 32. IP packaging example with generic interface components in RTL

simulation configuration.

50

9. CONCLUSION

Increasing wireless data usage sets stricter requirements for SoCs targeted for

telecommunication systems. Growing complexity of ASIC designs increases manual

algorithm and RTL coding which further makes verification more laborious. HLS tools

are starting to be a feasible alternative to be used to generate RTL prototype from

algorithm model. This truncates time from algorithm to FPGA prototype, therefore is

suitable for rapid prototyping.

The aim of this thesis was to study how well MathWorks HLS workflow suits for

rapid prototyping. The flow was studied with an example IP block that scales and

limits the power of IQ-data in telecommunication SoC. The goal was to examine the

speed of the entire flow, good coding rules to generate synthesizable VHDL, resource

utilization on FPGA and ASIC, design speed and possible production code quality.

HDL Coder was able to generate human readable production quality VHDL code

when algorithm was written by following good coding rules optimized for hardware.

Bad quality RTL was generated if the algorithm was written from perspective of

simulation speed and large data vectors were processed at once inside a function.

Generated RTL was verified in co-simulation and validation model simulation without

any errors.

Logic synthesis was done on the generated RTL and it provided promising results.

The generated model utilized fewer resources than the original and it was able to run

on higher clock frequency on FPGA. The original model was targeted on ASIC so the

results are not perfectly comparable. ASIC synthesis was done on the generated model

but it didn’t meet the timing requirements. By optimizing the algorithm better results

were reached. The results show that the HLS flow can provide good quality design

when executed by implementing best practices targeting for HW.

Finally, the design was verified on Altera’s FPGA board in FPGA-in-the-loop

configuration. The design was successfully programmed on the FPGA through JTAG-

connection. FPGA-in-the-loop simulation was used to verify the functionality of the

FPGA design with Simulink stimulus. The output from the FPGA was matching the

algorithm model and no errors were discovered.

RTL verification takes roughly 70% of the whole design cycle. The HLS flow can

be used to improve the prototyping flow by automating the RTL generation and also

decreasing the RTL verification times by moving the focus on the algorithm

verification. Early prototype also enables earlier SW development which further

improves the design flow.

Full integration into SoC prototyping flow requires connection to a powerful FPGA

prototyping environment e.g. Synopsys HAPS. However, it is already useful for

prototyping small IPs on alternative FPGA configurations. Furthermore, tight co-

operation with algorithm and RTL designers is required to implement this kind of flow

efficiently.

In general, rapid prototyping with HLS tools seems to be the future way to

correspond the increasing workload on exhausting prototyping phases of complex

ASIC designs. It might be even possible to generate the production code or part of it

with these tools in the future.

51

10. REFERENCES

[1] Mollick E., (2006) Annals of the History of Computing, IEEE (Volume: 28,
Issue: 3), Establishing Moore’s Law. IEEE, 14 p., 62-75.

[2] Harte L. & Bowler D. (2004) Introduction to Mobile Telephone Systems: 1G,

2G, 2.5G, and 3G Wireless technologies and Services. Althos Publishing, 43 p.

[3] Fingeroff (2010) High-Level Synthesis Blue Book. Xlibris, 272 p.

[4] Black D., Donovan J., Bunton B. & Keist A. (2010) SystemC: From the

Ground Up, Second Edition. Springer, New York, USA, 361 p.

[5] Coussy P. & Moraviec A. (2008) High-Level Synthesis: From Algorithm to

Digital Circuit. Springer Science + Business Media B.V., Dordrecht,
Netherlands, 297 p.

[6] Kaeslin H. (2008) Digital Integrated Circuit Desing From VLSI Architectures
to CMOS Fabrication. Cambridge University Press, Cambridge, UK, 845 p.

[7] Horváth P. (2014) RTL Optimization Techniques. (Accessed 24.2.2015) URL:

http://www.eet.bme.hu/~horvathp/contents/aramkortervezes/eloadasok/07_RT
L_Optimization_Techniques.pdf

[8] Qing W., Pedram M. & Xumwei W. (2000) Clock-Gating and Its Application

to Low Power Design of Sequential Circuits. Circuits and Systems I:
Fundamental Theory and Applications. IEEE, 6 p., 415-420.

[9] Qi W. & Sumit R. (2003) RTL Power Optimization with Gate-level Accuracy.

International Conference of Computer Aided Design. IEEE, 7 p., 39-45.

[10] Quora (2015) Semiconductors: What are the differences between static and

dynamic power consumption in CMOS integrated circuit? (Accessed

11.6.2015) URL: http://www.quora.com/Semiconductors/What-are-the-

differences-between-static-and-dynamic-power-consumption-in-CMOS-
integrated-circuits

[11] Kim N.S., Austin T., Baauw D., Mudge T., Flautner K., Hu J.S., Irwin M.J.,

Kandemir M., Narayanan V. (2003) Computer (Volume: 46, Issue: 12)
Leakage Current: Moore’s Law Meets Static Power. IEEE, p. 68-75.

[12] Rashinkar P, Paterson P. & Singh L. (2001) System-on-a-chip Verification:

Methodology and Techniques. Kluwer Academic Publishers, Norwell,
Massachusetts, USA, 372 p.

[13] Donald D. & Moorby P. (2002) The Verilog Hardware Description Language.
Springer Science + Business Media, Inc., New York, USA, p. 35-71.

[14] National Instruments (2012) Introduction to FPGA technology: Top 5 Benefits
(Accessed 27.2.2015) URL: http://www.ni.com/white-paper/6984/en/

[15] Xilinx (2015) What is a FPGA? (Accessed 27.2.2015) URL:

http://www.xilinx.com/fpga/

[16] Altera (2015) FPGAs (Accessed 27.2.2015) URL:
http://www.altera.com/products/fpga.html

[17] Amos D., Lesea A. & Richter R. (2011) FPGA-Based Prototyping
Methodology Manual. Synopsys, Inc., Mountain View, CA, USA, 470 p.

[18] Electronic Engineering Journal (2014) Xilinx vs. Altera (Accessed 27.2.2015)
URL: http://www.eejournal.com/archives/articles/20140225-rivalry/

http://www.eet.bme.hu/~horvathp/contents/aramkortervezes/eloadasok/07_RTL_Optimization_Techniques.pdf
http://www.eet.bme.hu/~horvathp/contents/aramkortervezes/eloadasok/07_RTL_Optimization_Techniques.pdf
http://www.quora.com/Semiconductors/What-are-the-differences-between-static-and-dynamic-power-consumption-in-CMOS-integrated-circuits
http://www.quora.com/Semiconductors/What-are-the-differences-between-static-and-dynamic-power-consumption-in-CMOS-integrated-circuits
http://www.quora.com/Semiconductors/What-are-the-differences-between-static-and-dynamic-power-consumption-in-CMOS-integrated-circuits
http://www.ni.com/white-paper/6984/en/
http://www.xilinx.com/fpga/
http://www.altera.com/products/fpga.html
http://www.eejournal.com/archives/articles/20140225-rivalry/

52

[19] Synopsys (2015) FPGA Based Prototypes Ideal for Prototyping ASIC and IP

(Accessed 2.3.2015) URL:

http://www.synopsys.com/Prototyping/FPGABasedPrototyping/haps-
dx/Pages/default.aspx

[20] Synopsys (2015) HAPS Datasheets (Accessed 3.3.2015) URL:

http://www.synopsys.com/Prototyping/FPGABasedPrototyping/pages/Datashe
ets.aspx

[21] Xilinx (2015) FPGA vs. ASIC (Accessed 27.2.2015) URL:

http://www.xilinx.com/fpga/asic.htm

[22] Churiwala S. & Garg S. (2011) Principles of VLSI RTL Design. Springer
Science+Business Media, New York, USA, 182 p.

[23] Cofer R.C. & Harding B. (2006) Rapid System Prototyping with FPGAs.
Elsevier Inc., Burlington, USA, 247 p.

[24] MathWorks (2015) What Are System Objects? (Accessed 15.4.2015) URL:
http://se.mathworks.com/help/comm/gs/what-are-system-objects.html

[25] MathWorks (2015) HDL Coder User’s Guide (Accessed 20.4.2015) URL:

http://cn.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf

[26] MathWorks (2015) How Acceleration Modes Work (Accessed 26.5.2015)

URL: http://se.mathworks.com/help/simulink/ug/how-the-acceleration-modes-
work.html

[27] MathWorks (2015) HDL Verifier User’s Guide (Accessed 26.5.2015) URL:
http://cn.mathworks.com/help/pdf_doc/hdlverifier/hdlv_ug_book.pdf

http://www.synopsys.com/Prototyping/FPGABasedPrototyping/haps-dx/Pages/default.aspx
http://www.synopsys.com/Prototyping/FPGABasedPrototyping/haps-dx/Pages/default.aspx
http://www.synopsys.com/Prototyping/FPGABasedPrototyping/pages/Datasheets.aspx
http://www.synopsys.com/Prototyping/FPGABasedPrototyping/pages/Datasheets.aspx
http://www.xilinx.com/fpga/asic.htm
http://se.mathworks.com/help/comm/gs/what-are-system-objects.html
http://cn.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf
http://se.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html
http://se.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html
http://cn.mathworks.com/help/pdf_doc/hdlverifier/hdlv_ug_book.pdf

53

11. APPENDICES

Appendix 1 An example of parallel and serial structure of MATLAB algorithm

Appendix 2 Downlink data scaling and power limitation simulation configuration

Appendix 3 MATLAB algorithm synthesis to VHDL example

Appendix 4 Nested conditional statement on persistent variables in “for”-loop

Appendix 5 An example timing report displaying data paths with negative slack

Appendix 6 Example of a structure creating unnecessary logic in a design

54

Appendix 1 An example of parallel and serial structure of MATLAB algorithm

Parallel structure with variable indexing that generates three multipliers

Serial structure with variable indexing that generates one multiplier and two 3-to-1

multiplexers

55

Appendix 2 Downlink data scaling and power limitation simulation configuration

56

Appendix 3 MATLAB algorithm synthesis to VHDL example

L
in

k
 to

M
A

T
L

A
B

d
e

s
ig

n

M
A

T
L

A
B

c
o

m
m

e
n

ts

L
in

e

n
u

m
b

e
r in

M
A

T
L

A
B

M
A

T
L

A
B

V
H

D
L

57

Appendix 4 Nested conditional statement on persistent variables in “for”-loop

58

Appendix 5 An example timing report displaying data paths with negative slack

59

Appendix 6 Example of a structure creating unnecessary logic in a design

Data type not

defined

Data type

defined

Two multipliers and

two multiplexers

Two multipliers

